If cot θ=78, evaluate: (1+sinθ)(1−sinθ)(1+cosθ)(1−cosθ)
Given cot θ=78
Consider (1+sinθ)(1−sinθ)(1+cosθ)(1−cosθ)=1−sin2θ1−cos2θ
=cos2θsin2θ
[∵1−sin2θ=cos2θ and 1−cos2θ=sin2θ ]
⇒(1+sinθ)(1−sinθ)(1+cosθ)(1−cosθ)=(cosθsinθ)2
=(cotθ)2
=(78)2 [ Given value]
=4964
Therefore, the value of the given expression is 4964
Alternatively ,
Let ΔABC in which ∠B=90∘ and ∠C=θ
According to the question,
cotθ=BCAB=78
Let BC=7k and AB=8k, where k is a positive real number.
By Pythagoras theorem in ΔABC; we get,
AC2=AB2+BC2
AC2=(8k)2+(7k)2
AC2=64k2+49k2
AC2=113k2
AC=√113k
sinθ=ABAC=8k√113k=8√113
and cosθ=BCAC=7k√113k=7√113……(i)
⇒(1+sin θ)(1−sin θ)(1+cos θ)(1−cos θ)=(1−sin2 θ)(1−cos2 θ)
={1−(8√113)2}{1−(7√113)2}={1−(64113)}{1−(49113)}={(113−64)113}{(113−49)113}=4964