wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

I=10log(1+x)1+x2dx

Open in App
Solution

I=10log(1+x)1+x2dx
x=tanθx=0tanθ=0 θ=0dx=11+x2x=1tanθ=1 θ=tan11=π4
I=π40log(1+tanθ)dθ (1)
a0f(x)dx=a0f(ax)dx
I=π40log(1+1tanθ1+tanθ)dθ
=π40log21+tanθdθ (2)
(1) + (2)
I=10log(1+x)1+x2dx
2I=π40log(1+tanθ)+log2log(1+tanθ)dθ
2I=π40log2dθ
I=log22θπ40
=lot2[π8θ]
=π8log2

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Integration by Parts
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon