wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

(i) secθ-1secθ+1=sin2θ(1+cosθ)2
(ii) secθ-tanθsecθ+tanθ=cos2θ(1+sinθ)2

Open in App
Solution

(i) LHS=secθ1secθ+1 =1cosθ11cosθ+1 =1cosθcosθ1+cosθcosθ =1cosθ1+cosθ =(1cosθ)(1+cosθ)(1+cosθ)(1+cosθ) {Dividing the numerator and denominator by (1+cosθ)} =1cos2θ(1+cosθ)2 =sin2θ(1+cosθ)2 =RHS(ii) LHS=secθtanθsecθ+tanθ =1cosθsinθcosθ1cosθ+sinθcosθ =1sinθcosθ1+sinθcosθ =1sinθ1+sinθ =(1sinθ)(1+sinθ)(1+sinθ)(1+sinθ) {Dividing the numerator and denominator by (1+sinθ)} =(1sin2θ)(1+sinθ)2 =cos2θ(1+sinθ)2 =RHS

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Ratios of Complementary Angles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon