If 0<θ<π2 and x=∑∞n=0cos2nθ,y=∑∞n=0sin2nθ,z=∑∞n=0cos2nθsin2nθ, then the value of xyz is
x=1+cos2θ+cos4θ+...∞
Hence sum of G.P is
=11−cos2θ
=1sin2θ
y=1+sin2θ+sin4θ+...∞
Hence sum of G.P is
=11−sin2θ
=1cos2θ
z=1+cos2θ.sin2θ+cos4θ.sin4θ...∞
=11−cos2θ.sin2θ
Hence x.y.z
=1cos2θ.sin2θ.11−cos2θ.sin2θ
=1cos2θ.sin2θ(1−cos2θ.sin2θ)
=1−cos2θ.sin2θ+cos2θ.sin2θcos2θ.sin2θ(1−cos2θ.sin2θ)
=1cos2θ.sin2θ+11−cos2θ.sin2θ
=cos2θ+sin2θcos2θ.sin2θ+11−cos2θ.sin2θ
=1cos2θ+1sin2θ+11−cos2θ.sin2θ
=x+y+z