If 0<θ<π2 and sinθ+cosθ+tanθ+cotθ+secθ+cscθ is equal to 7, then sin2θ is a root of the equation
sinθ+cosθ+tanθ+cotθ+secθ+cosecθ=7⇒sinθ+cosθ+sinθcosθ+cosθsinθ+1cosθ+1sinθ=7⇒sin2θcosθ+cos2θsinθ+sin2θ+cos2θ+sinθ+cosθsinθcosθ=7⇒sinθcosθ(sinθ+cosθ)+1+sinθ+cosθsinθcosθ=7
Substituting 2sinθcosθ=x⇒sinθ+cosθ=√1+x
We get
x2(√1+x)+1+√1+xx2=7⇒√1+x(x+2)+2=7x
Squaring both sides, we get
(1+x)(x+2)2=(7x−2)2⇒(1+x)(x2+4+4x)=49x2+4−28x⇒x2+4+4x+x3+4x+4x2=49x2+4−28x⇒x3−44x2+36x=0⇒x2−44x+36=0
Hence, option 'C' is correct.