If (1+i1−i)3−(1−i1+i)3=x+iy, find (x,y)
Let I1=(π4)2+√2,I2=(tan−1(1e))2+2e√e2+1,I3=(tan−1e)2+2√e2+1, then which of the following is true?
If x+iy=(1+i)(1+2i)(1+3i),then x2+y2