wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If 1+i1-i3-1-i1+i3=x+iy, find (x, y).

Open in App
Solution

1+i1-i=1+i1-i×1+i1+i =1+i212-i2 =12+i2+2i1+1 [ i2=-1] =1-1+2i2 =2i2 =i ....(1)


Also,
1-i1+i=1-i1+i×1-i1-i =1-i212-i2 =12+i2-2i1+1 [ i2=-1] =1-1-2i2 =-2i2 =-i ....(2)

It is given that,
1+i1-i3-1-i1+i3=x+iy(i)3-(-i)3=x+iy [From (1) and (2)]i3+i3=x+iy2i3=x+iy0-2i=x+iy [ i3=-i]x=0 and y=-2

Thus, (x, y) = (0, −2).

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Laws of Exponents
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon