If (1+sinA)(1+sinB)(1+sinC)=(1–sinA)(1–sinB)(1–sinC) then each side is equal to
±sinAsinBsinC
±cosAcosBcosC
±sinAcosBcosC
±cosAsinBsinC
Explanation for the correct option:
To find each side of equation (1+sinA)(1+sinB)(1+sinC)=(1–sinA)(1–sinB)(1–sinC):
The given equation is (1+sinA)(1+sinB)(1+sinC)=(1–sinA)(1–sinB)(1–sinC)
Multiplying by (1+sinA)(1+sinB)(1+sinC) on both sides,
[(1+sinA)(1+sinB)(1+sinC)]2=(1–sin2A)(1–sin2B)(1–sin2C)[(1+sinA)(1+sinB)(1+sinC)]2=cos2Acos2Bcos2C(1+sinA)(1+sinB)(1+sinC)=±cos2Acos2Bcos2C=±cosAcosBcosC
Similarly, (1–sinA)(1–sinB)(1–sinC)=±cosAcosBcosC
Hence option ( B): ±cosAcosBcosC is the correct option.