If (1+x)10=a0+a1x+a2x2+...+a10x10, then (a0−a2+a4−a6+a8−a10)2+(a1−a3+a5−a7+a9)2 is equal to
A
310
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
210
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
29
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
None of these
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is C210 (1+x)10=a0+a1x+a2x2+...a10x10 (1−x)10=a0−a1x+a2x2−a3x3...a10x10 Adding both we get (1+x)10+(1−x)10=2(a0+a2x2+a4x4+...a10x10) Substituting, x=√−1=i we get 25[eiπ4×2+e−iπ4×2]=2(a0−a2+a4+...−a10) 24[eiπ2+ei−π2]=a0−a2+a4+...−a10 24[i−i]=a0−a2+a4+...−a10 a0−a2+a4+...−a10=0 (a0−a2+a4+...−a10)2=0 ...(i) Similarly (1+x)10−(1−x)10=2(a1x+a2x3+a5x5+...a9x9) Substituting x=i we get 25[eiπ4×2−e−iπ4×2]=2i[a1−a3+a5−a7+a9] 24[eiπ2−ei−π2]=i[a1−a3+a5−a7+a9] 24[i−(−i)]=i[a1−a3+a5−a7+a9] 25(i)=i(a1−a3+a5−a7+a9) 25=(a1−a3+a5−a7+a9) (a1−a3+a5−a7+a9)2=(25)2=210 ...(ii) Adding i and ii, we get 210.