wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If (1+x)10=a0+a1x+a2x2+...+a10x10, then (a0−a2+a4−a6+a8−a10)2+ (a1−a3+a5−a7+a9)2 is equal to

A
310
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
210
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
29
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
None of these
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is C 210
(1+x)10=a0+a1x+a2x2+...a10x10
(1x)10=a0a1x+a2x2a3x3...a10x10
Adding both we get
(1+x)10+(1x)10=2(a0+a2x2+a4x4+...a10x10)
Substituting, x=1=i
we get
25[eiπ4×2+eiπ4×2]=2(a0a2+a4+...a10)
24[eiπ2+eiπ2]=a0a2+a4+...a10
24[ii]=a0a2+a4+...a10
a0a2+a4+...a10=0
(a0a2+a4+...a10)2=0 ...(i)
Similarly
(1+x)10(1x)10=2(a1x+a2x3+a5x5+...a9x9)
Substituting x=i we get
25[eiπ4×2eiπ4×2]=2i[a1a3+a5a7+a9]
24[eiπ2eiπ2]=i[a1a3+a5a7+a9]
24[i(i)]=i[a1a3+a5a7+a9]
25(i)=i(a1a3+a5a7+a9)
25=(a1a3+a5a7+a9)
(a1a3+a5a7+a9)2=(25)2=210 ...(ii)
Adding i and ii, we get 210.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Higher Order Derivatives
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon