If1-x6+1-y6=a3(x3-y3), thendydx=
x21-x6y21-y6
dydx=y21-y6x21-x6
dydx=x21-y6y21-x6
None of these
Explanation for the correct option:
Step 1: Change the given terms into other parameters.
If1-x6+1-y6=a3(x3-y3),
Putx3=sinθ&y3=sinφ
∴1-sin2θ+1-sin2φ=a3(sinθ-sinφ)
⇒ cosθ+cosϕ=a32cosθ+φ2sinθ-φ2
⇒ 2cosθ+φ2cosθ-φ2=a3[2cosθ+φ2sinθ-φ2]
⇒ cotθ-φ2=a3
⇒ θ-φ2=cot-1a3
⇒ sin-1x3-sin-1y3=2cot-1a3.......(1)
Step 2: Differentiating both sides of the equation(1) with respect to'x'.
ddx(sin-1x3-sin-1y3)=ddx(2cot-1a3)
⇒11-x6.3x2-11-y6.3y2.dydx=0
⇒ x21-y6y21-x6=dydx
∴dydx=x21-y6y21-x6
Hence, the correct option is(C)..