If 1-x6+1-y6=a(x3-y3) and dydx=f(x,y)1-y61-x6, then
f(x,y)=yx
f(x,y)=2yx
f(x,y)=y2x2
f(x,y)=x2y2
Explanation for the correct option:
Step 1. Put x3=cosθ and y3=cosɸ in given equation, we get
1-x6+1-y6=a(x3-y3)
⇒1–cos2θ+1–cos2ɸ=a(cosθ–cosɸ)
⇒ sinθ+sinɸ=a(cosθ–cosɸ)
⇒ 2sin[θ+ɸ]2cos[θ–ɸ]2=–2asin[θ+ɸ]2sin[θ–ɸ]2
⇒ cot[θ–ɸ]2=–a
⇒ [θ–ɸ]=2cot-1(-a) (Constant)
Step 2. Differentiate the given equation,
–3x21–x6+3y21–y6dydx=0
⇒ dydx=1–y61–x6x2y2
Comparing this with dydx=f(x,y)1-y61-x6
∴f(x,y)=x2y2
Hence , Option ‘D’ is Correct.