The correct option is A (n+1)nn!
We have,
C0+C1=n+1C1,C1+C2=n+1C2,…,
Cn−1+Cn=n+1Cn
∴ The given expression =n+1C1n+1C2…n+1Cn ⋯(1)
Now, n+1Cr=(n+1)!r!(n−r+1)!=(n+1)n!r!(n−r+1)(n−r)!⇒n+1Cr=n+1n−r+1nCr ⋯(2)
Putting n=1,2,3,…,n in Eq. (2), we get
(C0+C1)(C1+C2)…(Cn−1+Cn)=n+1nC1⋅n+1n−1C2…n+11Cn=(n+1)nn!C1C2C3…Cn