If 2k > 111111.11111 , then the minimum integral value of k that satisfies the given condition is (given that log 2 = 0.3010 and log 3 = 0.4771 )
17
2k > 111111.11111
log 2k > log 111111.11111
k log2 > log (10000009)
0.3010 k > log106 - 2log3
0.3010k>6−2× 0.4771
k > 16.76
So, minimum integral value of k that satisfies the relation is 17.