If 2tan−1(cosθ)=tan−1 (2 cosec θ),then show that θ=π4, where θ is any integer.
We have, 2tan−1(cos θ)=tan−1(2 cosec θ)
⇒ tant−1(2 cos θ1−cos2 θ)=tan−1(2 cosec θ)[∵ 2 tan−1 x=tan−1(2x1−x2)]⇒ (2cos θsin2 θ)=(2 cosec θ)⇒ (cot θ.2 cosec θ)=(2 cosec θ)⇒ cot θ =1⇒ cot θ=cotπ4⇒ θ=π4