If 2tan-1(cosx)=tan-1(2cosecx), then the value of x is
3π4
π4
π3
None of these
Explanation for the correct option:
Find the value of x:
Given,
2tan-1(cosx)=tan-1(2cosecx)
⇒tan-12cosx1–cos2x=tan-1(2cosecx) ∵2tan-1A=tan-1(2A1-A2)
⇒ 2cosx1–cos2x=2cosecx
⇒ 2cosxsin2x=2cosecx ∵sin2θ+cos2θ=1
⇒ cosx=sinx
∴x=π4
Hence, Option ‘B’ is Correct.