If 2tan−1(cosx)=tan−1(cscx), then the value of x is
2tan−1(cosx)=tan−1(cscx)tan−1(2cosx1−cos2x)=tan−1(1sinx)
⇒2cosx1−cos2x=1sinx⇒2cosxsinx=1−cos2x⇒2cosxsinx=sin2x⇒sinx(2cosx−sinx)=0⇒sinx=0,2cosx−sinx=0⇒sinx=0,cosx=sinx⇒x=nπ,π4
None of the options match with our general solution
So, option D is correct.