If 2x+2y=2x+y, then dydx is equal to
2x+2y=2x+y
Differentiating both sides
ln2.2x+ln2.2ydydx=ln2.2x+y(1+dydx)2x+2ydydx=2x+y(1+dydx)2x+2ydydx=2x+y+2x+ydydx(2y−2x+y)dydx=(2x+y−2x)dydx=2x+y−2x2y−2x+ydydx=2x(2y−1)2y(1−2x)dydx=2x−y(2y−11−2x)
So option C is correct.