If (2x2−x−1)5=a0+a1x+a2x2..........a10x10 then a2+a4+a6+a8+a10 =
Put x = 1,
⇒(2−1−1)5=a0+a1+a2..........a10
⇒a0+a1+a2+a3+a4..........a9+a10=0 ...........(1)
Put x = -1
⇒ (2+1−1)5=a0−a1+a2−a3...........a8−a9+a10
⇒a0−a1+a2−a3+.............−a9+a10=25 ...............(2)
(1) + (2)
⇒ 2 (a0−a2+a4.....a10) = 25
a0−a2+a4.....a10 = 24 = 16
To finf a0, put x = 0
⇒ (−1)5=a0=−1
⇒ -1 + a2+a4......a10 = 16
a2+a4+a6+a8+a10 = 16 + 1
=17