2y cosA= xsinA
cosA=xsinA/2y
since, cosA=1/secA
therefore, secA= 1/cosA
2y/xsinA
now put the value of secA in second equation
2x(2y/xsinA) - ycosecA=3
4y/sinA - y/sinA=3 since cosecA=1/sinA
3y/sinA = 3
y= sinA.
from equation 1,
x= 2sinAcosA/sinA
x= 2cosA
x^2+4y^2=(2cosA)^2+4(sinA)^2
=4cos^2A+4sin^2A
=4(cos^2A+sin^2A)
=4.
x^2+4y^2=4.