given
3sinθ+5cosθ=5square both the sides, we get,
(3sinθ+5cosθ)2=52 use (a+b)2=a2+b2+2ab
⇒9sin2θ+25cos2θ+2.3.5.sinθ.cosθ=25
using sin2θ+cos2θ=1, we get,
⇒9(1−cos2θ)+25(1−sin2θ)+30sinθcosθ=25
⇒9+25−9cos2θ−25sin2θ+30sinθcosθ=25
⇒9=9cos2θ+25sin2θ−30sinθcosθ
⇒32=(3cosθ−5sinθ)2=(5sinθ−3cosθ)2
(∵(a−b)2=(b−a)2)
If a2=b2 then a=±6
So (5sinθ−3cosθ)2=32
⇒(5sinθ−3cosθ)=±3
Hence Proved.