wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If 3sinθ+5cosθ=5 then show that 5sinθ3cosθ=±3

Open in App
Solution

given 3sinθ+5cosθ=5
square both the sides, we get,
(3sinθ+5cosθ)2=52 use (a+b)2=a2+b2+2ab
9sin2θ+25cos2θ+2.3.5.sinθ.cosθ=25
using sin2θ+cos2θ=1, we get,
9(1cos2θ)+25(1sin2θ)+30sinθcosθ=25
9+259cos2θ25sin2θ+30sinθcosθ=25
9=9cos2θ+25sin2θ30sinθcosθ
32=(3cosθ5sinθ)2=(5sinθ3cosθ)2
((ab)2=(ba)2)
If a2=b2 then a=±6
So (5sinθ3cosθ)2=32
(5sinθ3cosθ)=±3
Hence Proved.

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Ratios of Complementary Angles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon