1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Properties Derived from Trigonometric Identities
If 3 tan A=4 ...
Question
If 3 tan A = 4 then prove that
(i)
sec
A
-
cosec
A
sec
A
+
cosec
A
=
1
7
(ii)
1
-
sin
A
1
+
cos
A
=
1
2
2
Open in App
Solution
(i)
LHS
=
sec
θ
-
cosec
θ
sec
θ
+
cosec
θ
=
1
cos
θ
-
1
sin
θ
1
cos
θ
+
1
sin
θ
=
sin
θ
-
cos
θ
sin
θ
cos
θ
sin
θ
+
cos
θ
sin
θ
cos
θ
=
sin
θ
-
cos
θ
sin
θ
sin
θ
+
cos
θ
sin
θ
=
sin
θ
sin
θ
-
cos
θ
sin
θ
sin
θ
sin
θ
+
cos
θ
sin
θ
=
1
-
cot
θ
1
+
cot
θ
=
1
-
3
4
1
+
3
4
=
1
4
7
4
=
1
7
=
1
7
=
RHS
(ii)
Given
:
3
tan
A
=
4
⇒
tan
A
=
4
3
Since
,
tan
A
=
P
B
⇒
P
=
4
and
B
=
3
Using
Pythagoras
theorem
,
P
2
+
B
2
=
H
2
⇒
4
2
+
3
2
=
H
2
⇒
H
2
=
16
+
9
⇒
H
2
=
25
⇒
H
=
5
Therefore
,
sin
A
=
P
H
=
4
5
cos
A
=
B
H
=
3
5
Now
,
1
-
sin
A
1
+
cos
A
=
1
-
4
5
1
+
3
5
=
5
-
4
5
5
+
3
5
=
1
5
8
5
=
1
8
=
1
2
2
Hence
,
1
-
sin
A
1
+
cos
A
=
1
2
2
.
Suggest Corrections
28
Similar questions
Q.
(cotA-cosecA)(cotA-cosecA) =1-cosA/1+cosA
Q.
Prove the following trigonometric identities.
(i)
1
+
sin
A
1
-
sin
A
=
sec
A
+
tan
A
(ii)