The correct option is D
-3
Given 3sinθ+5cosθ=5
Now, if we assume
5sinθ−3cosθ=x
Squaring and adding both equations we get:
(9sin2θ+25cos2θ+30sinθcosθ)+(25sin2θ+9cos2θ−30sinθcosθ)=25+x2
⇒9(sin2θ+cos2θ) +25(sin2θ+cos2θ) =25+x2
If we use the trigonometric identity: (cos2θ+sin2θ)=1 in the equation, we get our equation as:
9+25=25+x2⇒9=x2⇒x=±3
⇒5sinθ−3cosθ=±3
Thus, the options b and d are correct.