wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If 3x2+4xy7y2=0 Find (a)dydx and (b)d2ydx2

Open in App
Solution

(a)3ddx(x2)+4ddx(xy)7ddx(y2)=0
3(2x)+4(xdydx+y)7(2ydydx)=0
(4x14y)dydx=6x4y
2(2x7y)dydx=2(3x+2y)
dydx=(3x+2y)2x7y
(b)d2ydx2=ddx(3x+2y2x7y)
=⎢ ⎢ ⎢(2x7y)ddx(3x+2y)(3x+2y)ddx(2x7y)(2x7y)2⎥ ⎥ ⎥
=⎢ ⎢ ⎢ ⎢(2x7y)(3+2dydx)(3x+2y)(27dydx)(2x7y)2⎥ ⎥ ⎥ ⎥
Since dydx=(3x+2y)2x7y
=⎢ ⎢ ⎢ ⎢ ⎢ ⎢(2x7y)(32(3x+2y)2x7y)(3x+2y)(2+7(3x+2y)2x7y)(2x7y)2⎥ ⎥ ⎥ ⎥ ⎥ ⎥
1(2x7y)3[(2x7y)(6x21y6x4y)(3x+2y)(4x14y+21x+14y)]
1(2x7y)3[(2x7y)(25y)(3x+2y)(25x)]
25(2x7y)3[(2x7y)(y)+(3x+2y)(x)]
=25(2x7y)3[2xy7y2+3x2+2xy]
=25(2x7y)3[3x2+4xy7y2]
=25(2x7y)3[3x2+7xy3xy7y2]
=25(2x7y)3[3x(xy)+7y(xy)]
=25(2x7y)3[(xy)(3x+7y)]

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Derivative of Simple Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon