The correct option is C 5 and -1
Given that α=−4 is one of the zeroes of x3−21x−20.
Let the other two zeroes be β and γ.
For cubic polynomial ax3+bx2+cx+d, sum of zeroes is given by −ba
Now, α+β+γ=−ba
∴ −4+β+γ=0
⇒ β+γ=4 ... (i)
Also, α×β×γ=−da
⇒ (−4)×β×γ=20
⇒ βγ=−5
⇒ γ=−5β ...(ii)
Put γ=−5β in (i)
⇒ β=−5β=4
⇒ β2−5=4β
⇒ β2−4β−5=0
⇒ β2−5β+β−5=0
⇒ β(β−5)+(β−5)=0
⇒ (β−5)(β+1)=0
⇒ β=5 or −1
∴ If β=5, γ=−1
Or, If β=−1, γ=5
Thus, the other two zeroes are 5 and –1.
Hence, the correct answer is option (c).