If 4sin4x+cos4x=1, then x is equal to (nϵz)
4sin4x+cos4x=1=4sin4x+(1−sin2x)2 ⇒4sin4x+1+sin4x−2sin2x=1 ⇒5sin4x−2sin2x+1=1 ⇒sin2x(5sin2x−2)=0 ⇒sinx=0orsinx=√25 ⇒x=nπorx=nπ±sin−1√25
The general solution to sin10x+cos10x=2916cos42x is