If 6(logx2−log4x)+7=0, then find the values of x
A
x=8 or x=2−23
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
x=7 or x=2−23
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
x=6 or x=2−23
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
none of these
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is Ax=8 or x=2−23 6(logx2−log4x)+7=0 or 6(logx2−12log2x)+7=0 or 6(1y−y2)+7=0 (where y=log2x) or 6(2−y22y)+7=0 or 3(2−y2y)+7=0 or 6−3y2+7y=0 or 3y2−7y−6=0 or y2+2y−9y−6=0 or (y−3)(3y+2)=0 or y=3 or y=−23 ⇒log2x=3 or −23 or x=8 or x=2−23