If a0,a1,a2,..... be the coefficients in the expansion of (1+x+x2)n in ascending powers of x, then prove that : (a0+a3+a6+...)=(a1+a4+a7+....)==(a2+a5+a8+...)=3n−1
Open in App
Solution
Put x=ω and note that 1+ω+ω2=0 where ω=−12+i√32 and ω2=−12−i√32 Δ=(a0+a3+a6+...)+ω(a1+a4+...)+ω2(a2+a5+...) or Δ=A+Bω+Cω2=0 Equating real and imaginary parts on the both sides A−B2−C2=0,√32(B−C)=0 ∴B=C and hence A=B ∴A=B=C Again putting x=1 in the given relation, we get 3n= Sum of all coefficients =A+B+C or 3n=3A∴A=3n−1=B=C