If a = 1 and b = 0, find the value of −1[a−3{b−4(a−¯¯¯¯¯¯¯¯¯¯¯¯b−8)+4a}+10].
-107
Open in App
Solution
The correct option is A -107
−1[a−3{b−4(a−¯¯¯¯¯¯¯¯¯¯¯¯b−8)+4a}+10]=−1[a−3{b−4(a−b+8)+4a}+10]=−1[a−3{b−4a+4b−32+4a}+10]=−1[a−3{5b−32}+10]=−1[a−15b+96+10]=−1[a−15b+106]=−a+15b−106 If a = 1 and b = 0, −a+15b−106=−1+0−106=−107