Given that,
a2+b2=3ab
Then prove that
log(a+b√5)=12(loga+logb)
Given a2+b2=3ab...................(1)
On adding both side 2ab and we get,
a2+b2+2ab=3ab+2ab
a2+b2+2ab=5ab
(a+b)2=5ab
(a+b)2(√5)2=ab
(a+b√5)2=ab
Taking log both side and we get,
log(a+b√5)2=log(ab)
2log(a+b√5)=loga+logb
Since, (logxn=nlogx)
Therefore,
log(a+b√5)=12(loga+logb)
Hence proved.