wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If a2+b2+c2=1,b+ic=(1+a)z, prove that a+ib1+c=1+iz1iz ,
Where a,b,c are real numbers and z is a complex number.

Open in App
Solution

b+ic1+a=z bic1+a=¯z
z+¯z=2b1+a, z¯z=2ic1+a
and z¯z=b2+c2(1+a)2=1a2(1+a)2=1a1+a
1+iz1iz=1+iz1iz×1+i¯z1+i¯z=1+i(z+¯z)z¯z1i(z¯z)+z¯z
1+iz1iz=[1+i2b1+a1a1+a]÷[1+2c1+a+1a1+a]
=2(a+ib)2(1+c)=(a+ib)(1+c)

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Introduction
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon