The given information is:
a2x2+b2y2=c2z2
⇒z=[(axc)2+(byc)2]12
Now finding the respective derivatives,
dzdx=2axc22[(axc)2+(byc)2]12
⇒dzdx=a2xc2z
Now again differentiating with respected to x we get,
d2zdx2=a2c2(z−a2x2c2zz2)
⇒1a2d2zdx2=1c2(z−a2x2c2zz2)
⇒1a2d2zdx2=c2z2−a2x2c4z3 .....(I)
Now again differentiating with respected to y we get,
d2zdy2=b2c2(z−b2y2c2zz2)
⇒1b2d2zdy2=1c2(z−b2y2c2zz2)
⇒1b2d2zdy2=c2z2−b2y2c4z3 .....(II)
So on adding equations (I) and (II) we get,
⇒1a2d2zdx2+1b2d2zdy2=2c2z2−a2x2−b2y2c4z3
⇒1a2d2zdx2+1b2d2zdy2=2c2z2−c2z2c4z3
⇒1a2d2zdx2+1b2d2zdy2=1c2z