Length of AB=2a
(a) C(4a,5a)
BC=√(2a)2+a2=√5a
CA=√(2a)2+a2=√5a⇒BC=CA≠AB
ΔABC is isosceles
(b) C((2+√3)a,5a)
BC=√3a2+a2=2a
CA=√3a2+a2=2a,ΔABC is equilateral
(c) C(6a,4a)
BC=√(4a)2+(2a)2=2√5a
CA=√(4a)2+0=4a
So (BC)2=20a2=(AB)2+(AC)2,ΔABC is right-angled.
(d) C(a,3a)
BC=√a2+(3a)2=√10a
CA=√a2+a2=√2a
so cosA=(AB)2+(AC)2−(BC)22AB×AC
=4a2+2a2−10a22×2a×√2a<0
⇒ A is obtuse and thus ΔABC is obtuse angled.