If A=(3−4i) and B=(9+ki), where k is a constant.
Given, A=3−4i,B=9+ki,Ab−15=0
∴AB=(3−4i)(9+ki)
∴27+3ki–36i–4ki2−15=60
∴−48+3ki−36i+4k=0
Separate the real and imaginery part equal to zero, then we get the value of k,
∴−48+4k=0,3k–36=0
∴−48=−4k,3k=36
∴k=12,k=12
So, the value of k is 12.