If A=35°,B=15°then C=40°,then tanAtanB+tanBtanC+tanCtanA is equal to
0
1
2
3
Explanation for the correct option:
Step 1. Finding the value:
Given, A=35°,B=15°,C=40°
,A+B+C=35°+15°+40°=90°
Step 2. Taking “tan” on both sides,
tan(A+B+C)=tan90°
⇒ tan(A+B)tanC=1
⇒ [(tanA+tanB)(1–tanAtanB)]tanC=1
⇒ (tanA+tanB)tanC=1–tanAtanB
⇒tanAtanC+tanBtanC+tanAtanB=1
Hence, Option ‘B’ is Correct.
Mark (✓) against the correct answer In ∆ABC, if ∠A = 65° and ∠C = 85°, then ∠B = ? (a) 25° (b) 30° (c) 35° (d) 40°
If in a triangle ABC, a = 15, b = 36, c = 39, then sin C/2 is equal to