If A = 45∘, verify that:
(i) sin2A=2sin AcosA (ii) cos2A=2cos2 A−1=1−2 sin2 A
(i) A=45o
Sin2A=2sinA cosA
Sin2(45o)=2sin45oCos45o
Sin90o=2Sin45o Cos45o
1=2×1√2×1√2
1=1
Hence proved.
(ii) A=45o
to prove, cos2A=2cos2A−1=1−sin2A
cos2A=cos2×45o=cos90o=0
2cos2A−1=2×(1√2)2−1=2×12−1=1−1=0
1−sin2A=1−(sin90o)=1−1=0