The correct option is B 72p2+18q2
Given: a=6p and b=3q
To find: (a+b)2+(a−b)2
We know that,
(a+b)2=a2+2ab+b2(a−b)2=a2−2ab+b2
(a+b)2+(a−b)2=a2+2ab+b2+a2−2ab+b2=2a2+2b2
On substituting the values of a and b, we get,
(a+b)2+(a−b)2=(6p+3q)2+(6p−3q)2=2(6p)2+2(3q)2=2(36p2)+2(9q)2=72p2+18q2