If a,a1,a2.............a10,b are in A.P. and a,g1,g2......g10,b are in G.P. and h is the H.M between a and b, then a1+a2+.........+a10g1g10+a2+a3+.........+a9g2g9+...........+a5+a6g5g6 is
A
10h
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
15h
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
30h
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
5h
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is A30h Given a,a1,a2.............a10,b are in A.P. Total number of terms in the AP are 12. Let d be the common difference. b=a+11d ⇒d=b−a11 a1=a+d=a+b−a11=10a+b11 a2=a+2d=a+2(b−a)11=9a+2b11 a9=a+9d=a+9(b−a)11=9a+b11 a10=a+10d=a+10(b−a)11=a+10b11 So, a1+a10=a2+a9=..........=a+b .....(1) Also,given a,g1,g2......g10,b are in GP Let r be the common ratio b=ar11 ⇒r=(ba)1/11 Now, g1=ar=a(ba)1/11=a10/11b1/11 g2=ar2=a(ba)2/11=a9/11b2/11 g9=ar9=a(ba)9/11=a2/11b9/11 g10=ar10=a(ba)10/11=a1/11b10/11 So, g1g10=g2g9....=ab ....(2) Consider, a1+a2+.........+a10g1g10+a2+a3+.........+a9g2g9+...........+a5+a6g5g6 =5(a+b)+4(a+b)+3(a+b)+2(a+b)+(a+b)ab =15(a+b)ab =30h(∴h=2aba+b)