N=(a+ib)3−107i =a3−ib3+3a2ib−3ab2−107i =(a3−3ab2)+i(−b3+3a2b−107)
Since, N is a positive integer so,
Im(z)=0⇒−b3+3a2b−107=0⇒b(3a2−b2)=107×1=1×107[∵ 107 is a prime number]
b=1, 3a2−b2=107⇒a=6N=a3−3ab2=198∴N6=33
OR,
b=107, 3a2−b2=1⇒a2=1+10723∉I(reject)
Hence, N6=33