If (a+b)2=64 and ab=12. What is the value of (a−b)2?
112
16
64
48
(a+b)2−(a−b)2=(a2+b2+2ab)−(a2+b2−2ab)
=2ab+2ab=4ab
So, (a−b)2=(a+b)2−4ab
Substituting the values we get:
=(a−b)2=64−4×12=64−48=16
Parallelogram ABCD and rectangle ABEF are on the same base AB. If AB=14 cm, BC=12 cm, then the possible value for the perimeter of ABEF is
If 2a=√64,thena4 is equal to