If (a+b)2=a2+2ab+b2 then what is the value of a2+b2
a2+b2=(a+b)2+2ab
a2+b2=(a+b)2−2ab
a2+b2=(a−b)2−2ab
a2+b2=3(a+b)2
We know that, (a+b)2=a2+2ab+b2 ⇒a2+b2=(a+b)2−2ab
Which of the following is correct? a) (a−b)2=a2+2ab−b2 b) (a−b)2=a2−2ab+b2 c) (a−b)2=a2−b2 d) (a+b)2=a2+2ab−b2