The correct option is C 7
Given, a−b=3
⇒a−3=b ...(i)
and a3−b3=117
⇒(a−b)(a2+ab+b2)=117 ...(ii)
Divide (ii) by (i), we get
∴a2+ab+b2=1173=39 ...(iii)
Put the value of b in eq. (iii),
⇒a2+a(a−3)+(a−3)2=39
⇒3a2−9a+9=39
⇒a2−3a−10=0
⇒(a+2)(a−5)=0
⇒a=−2or5
and b=−5 or 2
⇒a+b=5+2=7