wiz-icon
MyQuestionIcon
MyQuestionIcon
3
You visited us 3 times! Enjoying our articles? Unlock Full Access!
Question

If A, B and C are angles of a triangle, then the determinant -1cos Ccos Bcos C-1cos Acos Bcos A-1 is equal to
(a) 0
(b) –1
(c) 1
(d) none of these

Open in App
Solution

Given: A, B and C are angles of a triangle
Therefore, A+B+C=π ...1


-1cosCcosBcosC-1cosAcosBcosA-1Expanding through R1=-11-cos2A-cosC-cosC-cosAcosB+cosBcosAcosC+cosB=-1+cos2A+cos2C+cosAcosBcosC+cosAcosBcosC+cos2B=-1+2cosAcosBcosC+cos2A+cos2B+cos2C=-1+2cosAcosBcosC+1+cos2A2+1+cos2B2+cos2C 2cos2θ=1+cos2θ=-1+2cosAcosBcosC+1+cos2A+1+cos2B2+cos2C=-1+2cosAcosBcosC+2+2cos2A+2B2cos2A-2B22+cos2C cosA+cosB=2cosA+B2cosA-B2=-1+2cosAcosBcosC+2+2cosA+BcosA-B2+cos2C=-1+2cosAcosBcosC+2+2cosπ-CcosA-B2+cos2C A+B+C=π=-1+2cosAcosBcosC+2-2cosCcosA-B+2cos2C2 =-1+2cosAcosBcosC+1-cosCcosA-B+cos2C=-1+2cosAcosBcosC+1-cosCcosA-B-cosC=-1+2cosAcosBcosC+1-cosC-2sinA-B+C2sinA-B-C2 cosA-cosB=-2sinA+B2sinA-B2=-1+2cosAcosBcosC+1-cosC-2sinA+C-B2sinA-B+C2=-1+2cosAcosBcosC+1-cosC-2sinπ-B-B2sinA-π-A2 A+B+C=π=-1+2cosAcosBcosC+1+2cosCsinπ2-BsinA-π2=-1+2cosAcosBcosC+1+2cosCcosBsinA-π2=-1+2cosAcosBcosC+1-2cosCcosBsinπ2-A=-1+2cosAcosBcosC+1-2cosCcosBcosA=0


Hence, the correct option is (a).

flag
Suggest Corrections
thumbs-up
11
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Ratios
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon