The correct option is B 47
It is given that a+b+c=12
Using identity ,
(a+b+c)2=a2+b2+c2+2 (ab+ac+bc), we have
122=a2+b2+c2+2 (ab+ac+bc)
Substituting the value of a2+b2+c2 which is 50,we get
144=50+2 (ab+ac+bc)
⟹2 (ab+ac+bc)=144−50
⟹2 (ab+ac+bc)=94
⟹ab+ac+bc=47