wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If A + B + C = 180, then sin (B + 2C) + sin (C + 2A) + sin (A + 2B)


A

4 sin . sin . cos

No worries! We‘ve got your back. Try BYJU‘S free classes today!
B

4 sin . sin . sin

Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C

1 + 4 sin . sin . sin

No worries! We‘ve got your back. Try BYJU‘S free classes today!
D

1 + 4 sin . sin . cos

No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is B

4 sin . sin . sin


sin (B + C + C) + sin (C+A+A) + sin (A + B + B)

= sin (180 - A + C) + sin (180 - B + A) + sin (180 - C + B)

= sin (180 - (A - C)) + sin (180 - (B - A)) + sin (180 - (C - B))

= sin (A - C) + sin (B - A) + sin (C - B)

= 2 sin (AC+BA)2 . cos (ACB+A)2 + 2sin (CB)2 . cos(CB)2

= 2 sin (BC)2 . cos ((2ABC)2) + 2sin (BC)2 . cos(CB)2

= 2 sin BC2 . cos (2ABC2) - 2sin BC2 . cosCB2

= 2 sin BC2 [cos((2ABC)2)cosCB2]

= 2 sin BC2 [2sin(2ABC+CB2)2.sin(CB22ABC2)2]

= 2 sin BC2 [2sin(2A2B2)2.sin(2C2B2)2]

= 2 sin BC2 . 2 sin AB2 . sin CA2

= 4 sin BC2 . sin CA2 . sin AB2


flag
Suggest Corrections
thumbs-up
10
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Multiple and Sub Multiple Angles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon