If A + B + C = 180∘, then sin (B + 2C) + sin (C + 2A) + sin (A + 2B)
4 sin . sin . sin
sin (B + C + C) + sin (C+A+A) + sin (A + B + B)
= sin (180 - A + C) + sin (180 - B + A) + sin (180 - C + B)
= sin (180 - (A - C)) + sin (180 - (B - A)) + sin (180 - (C - B))
= sin (A - C) + sin (B - A) + sin (C - B)
= 2 sin (A−C+B−A)2 . cos (A−C−B+A)2 + 2sin (C−B)2 . cos(C−B)2
= 2 sin (B−C)2 . cos ((2A−B−C)2) + 2sin −(B−C)2 . cos(C−B)2
= 2 sin B−C2 . cos (2A−B−C2) - 2sin B−C2 . cosC−B2
= 2 sin B−C2 [cos((2A−B−C)2)−cosC−B2]
= 2 sin B−C2 [2sin(2A−B−C+C−B2)2.sin(C−B2−2A−B−C2)2]
= 2 sin B−C2 [2sin(2A−2B2)2.sin(2C−2B2)2]
= 2 sin B−C2 . 2 sin A−B2 . sin C−A2
= 4 sin B−C2 . sin C−A2 . sin A−B2