Byju's Answer
Standard VII
Physics
Components of White Light
If a+b+c=6,1 ...
Question
If
a
+
b
+
c
=
6
,
1
a
+
1
b
+
1
c
=
3
2
,
then
a
b
+
a
c
+
b
a
+
b
c
+
c
a
+
c
b
=
_
_
_
_
_
_
_
_
_
_
.
Open in App
Solution
Given
:
1
a
+
1
b
+
1
c
=
3
2
.
.
.
1
a
+
b
+
c
=
6
.
.
.
2
Now
,
a
b
+
a
c
+
b
a
+
b
c
+
c
a
+
c
b
Adding
and
subtracting
3
,
we
get
=
a
b
+
a
c
+
b
a
+
b
c
+
c
a
+
c
b
+
3
-
3
=
a
b
+
a
c
+
b
a
+
b
c
+
c
a
+
c
b
+
1
+
1
+
1
-
3
=
a
b
+
a
c
+
b
a
+
b
c
+
c
a
+
c
b
+
a
a
+
b
b
+
c
c
-
3
=
a
a
+
b
a
+
c
a
+
a
b
+
b
b
+
c
b
+
a
c
+
b
c
+
c
c
-
3
=
a
+
b
+
c
a
+
a
+
b
+
c
b
+
a
+
b
+
c
c
-
3
=
6
a
+
6
b
+
6
c
-
3
From
2
=
6
a
+
6
b
+
6
c
-
3
=
6
1
a
+
1
b
+
1
c
-
3
=
6
3
2
-
3
From
1
=
9
-
3
=
6
Hence, if
a
+
b
+
c
=
6
,
1
a
+
1
b
+
1
c
=
3
2
,
then
a
b
+
a
c
+
b
a
+
b
c
+
c
a
+
c
b
=
6
.
Suggest Corrections
0
Similar questions
Q.
Find the value of the expression in terms of
a
,
b
,
and
c
.
(
a
b
+
b
c
)
(
−
c
b
+
b
a
)
+
(
b
c
+
c
a
)
(
−
a
c
+
c
b
)
+
(
c
a
+
a
b
)
(
a
c
–
b
a
)
Q.
∣
∣ ∣
∣
b
+
c
a
−
b
a
c
+
a
b
−
c
b
a
+
b
c
−
a
c
∣
∣ ∣
∣
=
Q.
Show that :
∣
∣ ∣ ∣
∣
b
c
−
a
2
c
a
−
b
2
a
b
−
c
2
−
b
c
+
c
a
+
c
b
b
c
−
c
a
+
a
b
b
c
+
c
a
−
a
b
(
a
+
b
)
(
a
+
c
)
(
b
+
c
)
(
b
+
a
)
(
c
+
a
)
(
c
+
b
)
∣
∣ ∣ ∣
∣
=
3
(
b
−
c
)
(
c
−
a
)
(
a
−
b
)
(
a
+
b
+
c
)
(
b
c
+
c
a
+
a
b
)
.
Q.
Evaluate tan
-1
(a - b)/(1+ab)+ tan
-1
(b - c)/(1+bc)+ tan
-1
(c - a)/(1+cb) ; ab,bc,ac>-1
Q.
Prove that
∣
∣ ∣ ∣
∣
b
c
−
a
2
c
a
−
b
2
a
b
−
c
2
−
b
c
+
c
a
+
a
b
b
c
−
c
a
+
a
b
b
c
+
c
a
−
a
b
(
a
+
b
)
(
a
+
c
)
(
b
+
c
)
(
b
+
a
)
(
c
+
a
)
(
c
+
b
)
∣
∣ ∣ ∣
∣
=
3.
(
b
−
c
)
(
c
−
a
)
(
a
−
b
)
(
a
+
b
+
c
)
(
a
b
+
b
c
+
c
a
)
View More
Related Videos
Does Sunlight Have Colours?
PHYSICS
Watch in App
Explore more
Components of White Light
Standard VII Physics
Solve
Textbooks
Question Papers
Install app