CameraIcon
CameraIcon
SearchIcon
MyQuestionIcon
MyQuestionIcon
Question

Prove that
∣ ∣ ∣bca2cab2abc2bc+ca+abbcca+abbc+caab(a+b)(a+c)(b+c)(b+a)(c+a)(c+b)∣ ∣ ∣=3.(bc)(ca)(ab)(a+b+c)(ab+bc+ca)

Open in App
Solution

Consider, ∣ ∣ ∣bca2cab2abc2bc+ca+abbcca+abbc+caab(a+b)(a+c)(b+c)(b+a)(c+a)(c+b)∣ ∣ ∣
=∣ ∣ ∣bca2cab2abc2bc+ca+abbcca+abbc+caaba2+ab+bc+acb2+ab+bc+acc2+ab+bc+ac∣ ∣ ∣
R3R3+R1
=∣ ∣bca2cab2abc2bc+ca+abbcca+abbc+caabab+2bc+acab+bc+2ac2ab+bc+ac∣ ∣
C1C1C2,C2C2C3
=∣ ∣ ∣(ba)(a+b+c)(cb)(a+b+c)abc22c(ab)2a(bc)bc+caabc(ba)a(cb)2ab+bc+ac∣ ∣ ∣
=(ab)(bc)∣ ∣ ∣(a+b+c)(a+b+c)abc22c2abc+caabca2ab+bc+ac∣ ∣ ∣
R2R2+2R3
=(ab)(bc)∣ ∣ ∣(a+b+c)(a+b+c)abc2003bc+3ca+3abca2ab+bc+ac∣ ∣ ∣
Expanding along second row, we get
=3(ab)(bc)(ab+bc+ca)(ca)(a+b+c)

flag
Suggest Corrections
thumbs-up
0
mid-banner-image
mid-banner-image
similar_icon
Related Videos
thumbnail
lock
Summation in Determinants
MATHEMATICS
Watch in App