The correct option is
A 3aA+bB+cC+√(a2+b2+c2)(A2+B2+C2)=0
⇒aA+bB+cC=−√(a2+b2+c2)(A2+B2+C2)
squaring both sides, we get
⇒(aA+bB+cC)2=(−√(a2+b2+c2)(A2+B2+C2))2
⇒(aA+bB+cC)2=(a2+b2+c2)(A2+B2+C2)
⇒a2A2+b2B2+c2C2+2AbB+2bBcC+2cCaA=a2(A2+B2+C2)+b2(A2+B2+C2)+c2
(A2+B2+C2)
⇒a2A2+b2B2+c2C2+2AbB+2bBcC+2cCaA=a2A2+a2B2+a2C2+b2A2+b2B2+b2C2+
c2A2+c2B2+c2C2
⇒2AabB+2bBcC+2cCaA=a2B2+a2C2+b2A2+b2C2+c2A2+c2B2
⇒2AabB+2bBcC+2cCaA=a2B2+b2A2+a2C2+c2A2+b2C2+c2B2
⇒0=a2B2−2AabB+b2A2+a2C2−2cCaA+c2A2+b2C22bBcC+c2B2
⇒0=(aB−bA)2+(aC−cA)2+(bC−Bc)2
⇒(aB−bA)2=0,(aC−cA)2=0,(bC−Bc)2=0
⇒aB−bA=0,aC−cA=0,bC−Bc=0
⇒aB=bA,aC=cA,bC=Bc
Substituting the values of aB=bA,aC=cA,bC=Bc in aBbA+bCcB+cAaC we get
The value of aBbA+bCcB+cAaC=bAbA+cBcB+cAcA=1+1+1=3