If A, B, C are angles of a triangles, then cos A + cos B + cos C is equal to
cos A+cos B+cos C=2cos(A+B2) cos(A−B2)+cos C
=2sinC2 cos(A−B2)+1−2sin2C2
=1+2sinC2 [cos(A−B2)−sinC2]
=1+2sinC2 [cos(A−B2)−cosA+B2]
=1+2sinA2 .2sinB2.sinC2
=1+4sinA2 .sinB2.sinC2
=1+rR