Let tan A=a,tanB =b,tanC =c∣∣
∣
∣∣(b+c)2a2a2b2(c+a)2b2c2c2(a+b)2∣∣
∣
∣∣
C2→C2−C1,C3→C3−C1
=(a+b+c)2∣∣
∣
∣∣(b+c)2a−b−ca−b−cb2c+a−b0c20a+b−c∣∣
∣
∣∣
R1→R1−(R2+R3)
=(a+b+c)2∣∣
∣
∣∣2bc−2c−2bb2c+a−b0c20a+b−c∣∣
∣
∣∣
C2→C2+1bC1,C3→C3+1cC1
=(a+b+c)2∣∣
∣
∣
∣∣2bc00b2c+ab2cc2c2ba+b∣∣
∣
∣
∣∣=(a+b+c)2×2bc[(a+c)(a+b)−bc]
=2abc(a+b+c)3
For ΔABC, we know tan A+tan B+tan C=tan A tan B tan C⇒a+b+c=abc
∴Given expression=2(abc)4
The product of three non-zero numbers a, b, c is minimum, when all are equal.
∴tan A=tanB=tanC=√3
Minimum value of the given expression is(=2(√3×√3×√3)4=2×34×32=2×729=1458