The correct option is B is a perfect square
Since, a,b,c are in H.P.
Therefore, b=2aca+c. ....(1)
Consider a(b−c)x2+b(c−a)x+c(a−b)=0.
Now, D=b2(c−a)2−4ac(b−c)(a−b)=b2[(c+a)2−4ac]+4ac[b2−b(a+c)+ac]
⇒D=4a2c2[(c+a)2−4ac](c+a)2+4ac[4a2c2(a+c)2−2ac(a+c)a+c+ac] ...[ from (1) ]
⇒D=0
Since, the roots of the quadratic equation are equal.
Therefore, a(b−c)x2+b(c−a)x+c(a−b) is a perfect square.
Ans: B