wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If a, b, c are positive real numbers other than unity such that :
a(b+ca)loga = b(c+ab)logb = c(a+bc)logc
Prove that ab ba = bc cb = ca ac.

Open in App
Solution

Let,a(b+ca)loga=b(c+ab)logb=c(a+ba)logc=1x

Atfirstwetakea(b+ca)loga=kloga=ka(b+ca)

On multiplyingbothsidesbybbloga=kab(b+ca)(1)and,b(a+cb)logb=1klogbkb(c+ab)

On multiplingbyabothsidesalogb=kac+ka2bkab2(2)

Now,adequation1and2bloga+alogb=2kabc(asweknowthatlogab=bloga)log(ab×ba)=2kabc(3)

Similarlyb(a+cb)logb=1klogb=kb(c+ab)

On multiplingbycbothsideclogb=kcb(c+ab)clogb=kbc2+kabckeb2(4)and,c(a+bc)logc=1klogc=kc(a+bc)

On multiplyingbybbothsideboc=kabc(a+bc)blogc=kabc+kb2ckbc2(5)

Now, addequn4and5clogb+blogc=2kabclogbc+logcb=2kabclog(bc×cb)=2kabc(6)

Samewaywegetlog(ca×ac)=2kabc(7)log(ab×ba)=log(bc×cb)=log(ca×ac)

On takingantilogab×ba=bc×cb=ca×acproved.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon