Let,a(b+c−a)loga=b(c+a−b)logb=c(a+b−a)logc=1x
Atfirstwetakea(b+c−a)loga=kloga=ka(b+c−a)
On multiplyingbothsidesbybbloga=kab(b+c−a)−−−(1)and,b(a+c−b)logb=1klogb−kb(c+a−b)
On multiplingbyabothsidesalogb=kac+ka2b−kab2−−−(2)
Now,adequation1and2bloga+alogb=2kabc(asweknowthatlogab=bloga)log(ab×ba)=2kabc−−−(3)
Similarlyb(a+c−b)logb=1klogb=kb(c+a−b)
On multiplingbycbothsideclogb=kcb(c+a−b)clogb=kbc2+kabc−keb2−−−(4)and,c(a+b−c)logc=1klogc=kc(a+b−c)
On multiplyingbybbothsideboc=kabc(a+b−c)blogc=kabc+kb2c−kbc2−−(5)
Now, addequn4and5clogb+blogc=2kabclogbc+logcb=2kabclog(bc×cb)=2kabc−−−−(6)
Samewaywegetlog(ca×ac)=2kabc−−−−(7)log(ab×ba)=log(bc×cb)=log(ca×ac)
On takinganti−logab×ba=bc×cb=ca×acproved.